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Abstract. Formal methods have an important role in ensuring the cor-
rectness of safety critical systems. However, their application in industry
is always cumbersome: the lack of experts and the complexity of for-
mal languages prevents the efficient application of formal verification
techniques. In this paper we take a step in the direction of making for-
mal modelling simpler by introducing a framework which helps design-
ers to construct formal models efficiently. Our formal modelling frame-
work supports the development of traditional transition systems enriched
with complex data types with type checking and type inference services,
time dependent behaviour and timing parameters with relations. In addi-
tion, we introduce a toolchain to provide formal verification. Finally, we
demonstrate the usefulness of our approach in an industrial case study.

1 Introduction

Nowadays, an ever increasing number of information systems are embedded sys-
tems that have a dedicated function in a specific, often safety critical application
environment (e.g., components of a railway control system). In case of safety
critical systems, failures may endanger human life, or result in serious environ-
mental or material damage, thus ensuring conformance to a correct specification
is crucial for their development.

To guarantee that a system operates according to its specification, formal
verification techniques can be used. These techniques are based on formal rep-
resentation of both systems and their properties (requirements), which makes
it possible to apply mathematical reasoning to investigate their relationship.
Moreover, these methods allow verification of systems in an early phase of the
development life cycle.

Since behavior of safety critical systems is often time dependent, the notion
of time has to be represented in their models. The most prevalent way to model
timed systems is the formalism of timed automata. However, this formalism is
only suitable to describe timed behavior with respect to constant values, thus
its expressive power is not sufficient to model systems with parametric behavior.
Parametric timed automata, an extension of the original formalism, addresses
this problem.



In this paper we introduce a formal modelling framework for supporting
the efficient development of parametric timed automaton based formal models.
The modelling language is essentially based on the language of the well-know
Symbolic Analysis Laboratory (SAL) framework1 with extensions to simplify the
work of the modellers. These extensions enable the modelling of time dependent
behaviour on language level.

In the following, first we introduce the main features of language by modelling
the development version of an industrial protocol. Then we present our model
checking workflow and demonstrate the feasibility of it by the verification of the
protocol.

Related Work Our work is inspired by the SAL model checker [7] and its
language (our extensions are introduced in Section 3). The SAL language en-
ables compact modeling of systems in terms of (unlabeled) symbolic transition
systems, however it doesn’t support explicit modeling of time related behavior.
The aim was to preserve compatibility so that the timed models of our extended
language can still be transformed to the input of SAL. As another related tool,
UPPAAL [1] is a model checker widely used for the verification of timed systems.
It has a graphical interface and it provides efficient model checking algorithms
to verify timed automata. UPPAAL models can also be transformed to our lan-
guage with some restrictions: our formalism does not handle complex function
declarations. Our approach has different strengths as the underlying Satisfia-
bility Modulo Theories (SMT) technologies are efficient for even complex data
structures of the modelled systems. In addition, complex synchronisation con-
straints can be compactly expressed in our approach. The industrial case study
we use was first introduced in [8], where the SAL model checker was used for the
verification. Our paper now is based on the lessons learnt from that work. Simple
fault models were introduced in the case study, for a more general overview we
refer the interested reader to [4,2].

2 The ProSigma SCAN protocol

ProSigma is a microcontroller based system being developed by Prolan Ltd.
Its primary role is to provide reliable communication between the modules of a
railway control system. Since this functionality is highly safety critical, it has to
be implemented on the highest safety integrity level, SIL4. The system consists
of so-called ProSigma devices, that are interconnected in an IP based network.
Each ProSigma device contains a so-called ETH unit that is responsible for
data transport and so-called LG units (in object modules) that are responsible
for handling field objects such as switches and signals. Communication between
these units is based on the proprietary SCAN protocol. A part of the messages is
forwarded within a ProSigma device, while the other messages are sent through
the ETH unit to another ProSigma device addressed by the message.

1 http://sal.csl.sri.com/

http://sal.csl.sri.com/


A ProSigma application typically consists of a control side (e.g., a device at
a supervisory control system) and an object side (e.g., a device at a field object).
During connection handling, a connection is established and maintained between
an LG unit of the control side and an LG unit of the object side. Connection
handling includes the following two tasks:

– Establishing the connection: a link is built between the two sides.
– Object state transfer: each side sends its state to the other side.

During connection handling, the state of each connection has to be kept track
of at both sides. A connection is defined by the following:

– The connected pairs - the field side has at most four, while the control side
has at most one pair.

– The ETH unit providing the connection.

The connection is alive if and only if it is alive through at least one ETH unit.
In the first design of the protocol, the connection handling was characterized by
the following properties:

The connection is handled via OBJ messages (OBJ1, OBJ2, OBJUP,
OBJDOWN ). Received OBJ messages are processed on two levels. On the first
level, based on the timestamps provided in the message, it has to be checked
whether the message can be accepted to establish, respectively maintain the
connection. On the second level, the acceptability of the object state has to be
examined (the object state is more up-to-date than the one accepted last time,
it is sent by the right unit, etc.).

The connection is established in a two-way handshake: the first message
is initiating the connection, and the response to it serves as an acknowledgement.
In particular, on the field side, the connection is initiated by sending OBJ1 and
is acknowledged by receiving OBJ2. On the control side, sending OBJ2 initiates
and receiving OBJUP acknowledges the connection.

LG units on the field side must establish the connection with all correspond-
ing control sides through each ETH units independently.

Object state is transferred via two messages (OBJUP, OBJDOWN ).
Sending and receiving object state on an ETH channel is possible only after the
LG units of the field side and the control side established connection through
the ETH channel. The transfer is triggered by the ETH unit of the field side via
periodic TIMESYNC messages to the corresponding LG units.

The following model (Figure 1.) represents a connection as administered on
the field and the control side, respectively, as a network of timed automata with
an extended syntax that admits intuitive manipulation of data structures and
handshake over multiple input and output labels.

In the model, all messages originate from either of the sides, and propagate for
at least TPropMin and at most TPropMax time units. Assuming that the other
parameters of the system are proportional to the propagation time, it will never
be the case that a message or the object state stored in it is not acceptable due
to an outdated timestamp. Thus in order to simplify the model, the timestamps



(a) Field side (b) Control side

Fig. 1. Connection handling on the field and control side

(a) Channel (b) Fault model

Fig. 2. Models of the channel and the possible fault occurrences

of messages and acceptability checks are not included in the model (although
both the altered timed automata formalism and the specification language enable
their modeling).

Channel: The channel serves as a communication medium between compo-
nents. Its model (Figure 2(a)) has a role to store and delay messages for a
certain amount of time specified by its parameters, and then dispatch them.

Initially, the channel is empty. If a message is dispatched and the channel
is not full, then the message is stored. If the delay of a message is over, and
some component is able to receive it, then the message is forwarded to that
component. If the component instantly sends a response, then the response is
stored in place of the forwarded message.

Field side: The model of the field side is presented on Figure 1(a).
On the field side, the connection is initially in state Reset. As described

above, the connection establishment phase is initiated by receiving a TIMESYNC



message from the ETH unit. For the sake of simplicity, receiving a TIMESYNC
message is modeled with a clock clkSync and corresponding invariants. When
the clock reaches clkSync, the field module sends OBJ1 to the control side and
traverses to state Connecting.

In state Connecting, the LG unit waits for tRtMax time units for the OBJ2
message acknowledging the connection. If received in time, the connection is set
to state Connected, and the object state transfer phase starts on the field side.
Otherwise, as clock clkReset reaches tRTMax, the connection resets.

Object state transfer is also synchronized by TIMESYNC messages. When
received, the field LG unit sends its state to the control side in a message OBJUP.
If the time since the last OBJDOWN message received reaches tRtMax, the
connection resets on the field side.

Control side: Similarly to connection handling on the field side, initially, the
connection is in state Reset. When receiving OBJ1, the LG unit sends an OBJ2
message as response and sets the connection state to Connecting (Figure 1(b)) .

State Connecting is maintained for at most tRtMax time units. If no OBJUP
is received in that interval, the connection state is set to Reset. For an OBJUP
message received in time, the control LG unit sends its object state in an OBJ-
DOWN message, and sets the connection to Connected. If the time since the last
OBJUP message received reaches tRtMax, the connection state is set to Reset.

Fault model: Since the system has to operate in a safety critical setting, guar-
antees have to be given for scenarios including unexpected events. For that pur-
pose, the model is extended first with a simple fault model that describes loss
of a single message in the channel. The fault model is depicted on Figure 2(b).

3 The Language

The following section demonstrates the capabilities of our extended modelling
language by a step-by-step description of the model of the connection handling
in the SCAN protocol.

All elements of the model are encapsulated in the context of a specification.
A specification can have parameters that can be assigned concrete values later
on. In this case, a parameter n is introduced to represent the capacity of the
channel.

specification ProSigmaSpec(n : natural) {
// Type definitions
// Constant definitions
// Function definitions
// Constraint definitions
// System definitions
// Property definitions

}



To model automata locations and messages, two enumeration types are de-
fined. Moreover, a type for timing parameters is introduced as the set of non-
negative reals, and a subrange is introduced to serve as an index for messages in
the channel.

type Location : enum { reset, connecting, connected};
type Message : enum { null, obj1, obj2, objup, objdown };
type Param : { x : real | x >= 0 };
type Index : [1 to n];

Other supported data types include function, array, tuple and records types,
that can be combined to form more complex types.

Timing parameters can then be conveniently modeled as constants of type
Param. To represent a concrete setting of parameters, a value is assigned to each
constant.

const tRTMax : Param := 6.0;
const tSync : Param := 3.0;
const tPropMin : Param := 1.0;
const tPropMax : Param := 1.0;

However, parameters do not need to be defined explicitly, but can also be
represented by constraints expressing their relationships:

constraint 2 * tPropMax <= tRTMax;

Representing the model of the channel using the language is straightforward.
The channel has inputs msgEvent and send that together model the synchro-
nization primitive send(x). Received messages are stored in array pending, until
clock clkReceived reaches the timeout interval. The synchronization primitive
receive(x) is modelled by output receive.

system Channel := {
input var msgEvent : boolean;
input var send : Message;
global var pending : array Index of Message;
global var clkReceived : array Index of clock;
output var receive : Message;
...

}

The invariant that ensures that messages are delayed for at most tPropMax
time units can be modelled explicitly.

invariant forall (i : Index) : (
pending[i] = ::null imply clkReceived[i] <= tPropMax

);



Analogously to invariant constraints, also urgency constraints can be speci-
fied that prohibit time to elapse in certain states.

Initial values of the variables are assigned in an initialization section.

initialization {
let receive = ::null;
let pending = [ i : Index | ::null ];

}

Similarly, transitions of the automaton can be mapped to transition sections.
For example, the transition that dispatches a message and stores the immediate
response in a single step can be modelled as follows.

transition async (i : Index) :
msgEvent’ and send’ /= ::null and
pending[i] /= ::null and clkReceived[i] >= tPropMin --> {
let pending’[i] = send’;
let clkReceived’[i] = 0.0;
let receive’ = pending[i];

}

The keyword async denotes that there is an instance of the transition for
each index i. The formula followed by --> serves as the guard of the guarded
command. Aposthrophes mark the next state of a variable.

Transitions of the modules can then be defined in a way that complements
the definition of the channel. For example, the transition of the Control module
that models receiving an OBJ1 message in location Reset can be specified as
follows:

transition control_location = ::reset and
receive’ = ::obj1 --> {
let msgEvent’ = true;
let send’ = ::obj2;
let control_location’ = ::connecting;
let control_reset’= 0.0;

}

Here, receive is an input variable, whereas send and msgEvent are global
variables. Notice that the model is modular in the sense that responsibilities
of communicating modules and the channel are completely separated. Given all
modules are defined, the system can be composed in the following way:

system ProSigma :=
(FieldLG [] ControlLG [] FaultModel) || Channel;



That is, communicating modules are composed asynchronously, then the re-
sult is composed synchronously to the channel.

Temporal properties can then be defined over the composed system. For
example, the model can be validated by checking the property expressing that
the capacity of the array for received messages is sufficiently big:

property capacity : ProSigma models
G exists (i : Index) : pending[i] = ::null;

The liveness property that expresses that eventually a stable connection is
established is the following – note that the usual temporal operators G (globally)
and F (eventually) are used:

property live : ProSigma models F G (
field_location = ::connected and
control_location = ::connected

)

4 The Verification Workflow

The semantics of the language is provided by a series of simplifying model trans-
formations, and a mapping to an SMT problem. Figure 3 depicts the verification
workflow. Dashed lines sign the possible extensions with other modelling and
verification technologies.

Fig. 3. Verification workflow



The starting point of the workflow is a model in the above language given
either directly, or as a result of a transformation from other timed formalisms,
e.g. UPPAAL [1].

As a first step, the system is automatically flattened, that is, the result of a
synchronous, respectively asynchronous composition is established. This is per-
formed by merging the variables, invariant and urgency constraints, and initial-
ization and transition definitions of the components. For example, the following
transition of the system ProSigma is a result of merging the two transitions
presented in the previous section:

transition control_location = ::reset and receiveˆ = ::obj1 and
msgEvent’ and send’ /= ::null and
pending[1] /= ::null and clkReceived[1] >= tPropMin --> {
let pending’[1] = send’;
let clkReceived’[1] = 0.0;
let send’ = ::obj2;
let control_location’ = ::connecting;
let control_reset’ = 0.0;
let msgEvent’ = true;
let receive’ = pending[1];

}

During this step, many of the constructed transitions can be eliminated by
simply checking the satisfiability of their guards with a call to the underlying
SMT solver [6].

In the next step, the model is automatically ”untimed” by expressing the
semantics of delay transitions explicitly:

transition control_location = ::reset and receiveˆ = ::obj1 and
msgEvent’ and send’ /=::null and
pending[1] /= ::null and clkReceived[1] + d >= tPropMin --> {
let field_location’ = field_location;
let field_reset’ = field_reset + d;
let field_sync’ = field_sync + d;
let send’ = ::obj2;
let msgEvent’ = true;
let control_location’ = ::connecting;
let control_reset’ = 0.0;
let receive’ = pending[1];
let pending’ = [ i : Index |
if i = 1 then send’ else pending[i]

];
let clkReceived’ = [ i : Index |
if i = 1 then 0.0 else clkReceived[i] + d

];
}

Here, a combined transition semantics [5][7] is considered, where a transi-
tion merges the effects of a delay transition, followed by a discrete transition.



For that purpose, a new input variable d is introduced to represent time delay.
Such an untimed system model can easily be mapped to SAL or other inter-
mediate formalisms. At the same time, transition (and initialization) definitions
are completed, that is, assignments for unmodified variables (e.g., variables of
asynchronous components) are made explicit. As a result, each variable (even
those of some complex data type) is assigned a value in at most one assignment
of a behavior definition.

The symbolic transition system represented by the model can then be easily
expressed in SMT by transforming initialization and transition definitions of the
system to predicates I(x̄), respectively T (x̄, x̄′) as usual [3].

The tooling is implemented in Eclipse2 using Eclipse Modeling Framework3

and relating technologies.

– Abstract syntax. The abstract syntax of the language is implemented as a
metamodel in EMF. It is defined as an extension of the core language suitable
for defining complex data types and expressions.

– Concrete syntax. The textual concrete syntax is defined by an LL∗-parsable
grammar. The textual editor is then generated using the Xtext4 tooling.

– Semantics. Model transformations that define the semantics of the language
are implemented in Xtend5.

– Well-formedness rules. Together with other validation constraints, algo-
rithms for type checking and type inference are implemented for the type
system of the language.

The formal modeling framework supports the development and analysis of
transition systems enriched with complex data types, time dependent behaviour,
timing parameters with relations and also synchronous and asynchronous com-
position of modules. The tooling provides type checking and type inference to
further improve usability.

5 Verification of the Protocol

To check the properties of the first design, bounded model checking in depth
k = 18 was executed. As a result, the counterexample depicted on Figure 4.
arised. On the diagram, the direction of the arrows symbolizes processing order
of events occurring at the same time.

The counterexample reveals that if events occur in a particular order, the
loss of even a single message can keep the connection from getting established,
contrary to expectations. Due to delay and jitter in IP networks, a situation like
that is possible even in practice. The situation can be prevented by modifying
the control module so that it responds to OBJ1 with OBJ2 in state Connecting.
The design models were updated accordingly, and the avoidance of this situation
was proven by repeated verification.

2 http://eclipse.org/
3 http://eclipse.org/modeling/emf/
4 http://eclipse.org/Xtext/
5 http://eclipse.org/xtend/

http://eclipse.org/
http://eclipse.org/modeling/emf/
http://eclipse.org/Xtext/
http://eclipse.org/xtend/


Fig. 4. Counterexample for the liveness property

6 Evaluation and Conclusion

This paper is one step towards scalable formal modelling. We proposed a mod-
elling language to provide better support for the designers of formal models by
focusing on the aspects of data semantics, time dependent behaviour, parameter-
ization, and synchronous and asynchronous composition of components. Instead
of manually coding flat transition systems, we provided automated model trans-
formations from our extended language to more simple transition systems that
can be directly mapped to the input of existing SMT solvers. This way and
automated verification workflow is offered.

To evaluate the effectiveness of our language, the formal model of the intro-
duced case study was developed in both our and the SAL languages. Comparing
the results, the complexity of the developed models are the following:

The SAL model contains:

– 5 components for modelling the basic behaviour consisting of 410 lines of
code,

– 2 components for supporting the proper analysis of the temporal logic spec-
ification consisting of 105 lines of code,



– 3 components for recognizing the loops in the state space (required for the
verification) consisting of 145 lines of code.

The formal model in our extended language contains 4 components and 235 lines
of code, which demonstrates that the new language has its advantage. Moreover,
it does not require additional components for the analysis.

Compared to UPPAAL timed automata, the main advantage of our language
is the greater flexibility in the handling of clock variables and clock constraints.
However, as UPPAAL provides a graphical modelling interface, in case of small
models it makes the development of formal models more simple. Regarding the
efficiency of verification, both approaches have their strengths.

In the future we plan to further improve our language with higher level
modelling constructs. We also plan to develop new model checking algorithms
based on induction techniques.
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